Terry Stewart
after(eight, nine)chase(dogs, cats)knows(Anne, thinks(Bill, likes(Charlie, Dave)))[number:eight next:nine][subject:dogs action:chase object:cats][subject:Anne action:knows object:[subject:Bill action:thinks object:[subject:Charlie action:likes object:Dave]]]Problems
Implementing Symbol Systems in Neurons
Based on vectors and functions on those vectors
Example
BLUE $\circledast$ SQUARE + RED $\circledast$ CIRCLELots of nice properties
[number:eight next:nine]NUMBER $\circledast$ EIGHT + NEXT $\circledast$ NINE[subject:Anne action:knows object:[subject:Bill action:thinks object:[subject:Charlie action:likes object:Dave]]] SUBJ $\circledast$ ANNE + ACT $\circledast$ KNOWS + OBJ $\circledast$ (SUBJ $\circledast$ BILL + ACT $\circledast$ THINKS + OBJ $\circledast$ (SUBJ $\circledast$ CHARLIE + ACT $\circledast$ LIKES + OBJ $\circledast$ DAVE))RED is similar to PINK then RED $\circledast$ CIRCLE is similar to PINK $\circledast$ CIRCLEBut rather complicated
RED $\circledast$ CIRCLE + BLUE $\circledast$ TRIANGLECIRCLE'' is "inverse"RED $\circledast$ CIRCLE + BLUE $\circledast$ TRIANGLE) $\circledast$ CIRCLE'RED $\circledast$ CIRCLE $\circledast$ CIRCLE' + BLUE $\circledast$ TRIANGLE $\circledast$ CIRCLE'RED + BLUE $\circledast$ TRIANGLE $\circledast$ CIRCLE'RED + noiseREDOBJ1 $\circledast$ (TYPE $\circledast$ STAR + SIZE $\circledast$ LITTLE) + OBJ2 $\circledast$ (TYPE $\circledast$ STAR + SIZE $\circledast$ BIG) + BESIDE $\circledast$ OBJ1 $\circledast$ OBJ2BESIDE $\circledast$ OBJ1 $\circledast$ OBJ2 = BESIDE $\circledast$ OBJ2 $\circledast$ OBJ1S = RED $\circledast$ NOUNVAR = BALL $\circledast$ NOUN'S $\circledast$ VAR = RED $\circledast$ BALLThis is not an actual question on the test
How can we model people doing this task?
A fair number of different attempts
Does this vector approach offer an alternative?
First we need to represent the different patterns as a vector
How do we represent a picture?
SHAPE $\circledast$ ARROW + NUMBER $\circledast$ ONE + DIRECTION $\circledast$ UPWe have shown that it's possible to build these sorts of representations up directly from visual stimuli
The memory of the list is built up by using a basal ganglia action selection system to control feeding values into an integrator
The same system can be used to do a version of the Raven's Matrices task
S1 = ONE $\circledast$ P1S2 = ONE $\circledast$ P1 + ONE $\circledast$ P2S3 = ONE $\circledast$ P1 + ONE $\circledast$ P2 + ONE $\circledast$ P3S4 = FOUR $\circledast$ P1S5 = FOUR $\circledast$ P1 + FOUR $\circledast$ P2S6 = FOUR $\circledast$ P1 + FOUR $\circledast$ P2 + FOUR $\circledast$ P3S7 = FIVE $\circledast$ P1S8 = FIVE $\circledast$ P1 + FIVE $\circledast$ P2
what is S9?
T1 = S2 $\circledast$ S1'T2 = S3 $\circledast$ S2'T3 = S5 $\circledast$ S4'T4 = S6 $\circledast$ S5'T5 = S8 $\circledast$ S7'
T = (T1 + T2 + T3 + T4 + T5)/5
S9 = S8 $\circledast$ T
S9 = FIVE $\circledast$ P1 + FIVE $\circledast$ P2 + FIVE $\circledast$ P3
This becomes a novel way of manipulating structured information
D3 + A + D2 + BD3 + B + D2 + AD3 $\circledast$ A + D2 $\circledast$ B
In [ ]:
D = 64
subdim = 8
N = 500
import nef
net=nef.Network('Symbols', fixed_seed=1, quick=True) #Create the network object
net.make('A',neurons=1,dimensions=D,mode='direct') # don't bother simulating these neurons
net.make('B',neurons=1,dimensions=D,mode='direct') # don't bother simulating these neurons
net.make_array('C',N,D/subdim,dimensions=subdim,radius=1.0/math.sqrt(D), seed=2)
conv = nef.convolution.make_convolution(net,'*','A','B','C',200, seed=3)
net.add_to_nengo()
In [ ]:
D = 64
subdim = 8
N = 500
import nef
net=nef.Network('Symbols', fixed_seed=1, quick=True) #Create the network object
net.make('A',1,D,mode='direct')
net.make('B',1,D,mode='direct')
net.make_array('C',N,D/subdim,dimensions=subdim,radius=1.0/math.sqrt(D), seed=2)
conv = nef.convolution.make_convolution(net,'*','A','B','C',200, seed=3)
net.make('E',1,D,mode='direct')
net.make('F',1,D,mode='direct')
conv = nef.convolution.make_convolution(net,'/','C','E','F',200, invert_second=True, seed=3)
net.add_to_nengo()
In [ ]:
D = 64
subdim = 8
N = 500
import nef
net=nef.Network('Symbols', fixed_seed=1, quick=True) #Create the network object
net.make('A',1,D,mode='direct')
net.make('B',1,D,mode='direct')
net.make_array('C',N,D/subdim,dimensions=subdim,radius=1.0/math.sqrt(D), seed=2)
net.connect('C', 'C', pstc=0.1)
conv = nef.convolution.make_convolution(net,'*','A','B','C',200, seed=3)
net.make('E',1,D,mode='direct')
net.make('F',1,D,mode='direct')
conv = nef.convolution.make_convolution(net,'/','C','E','F',200, invert_second=True, seed=3)
net.add_to_nengo()